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ABSTRACT

The -oal of this ,.,,ork is to compare the performance

of response surface methodology (RSM) and t_t) types t)[

neural networks (NN) to aid preliminary design el tv,'_) rocket

cn,:ine_ components..\ data set _t --i.5 traillin,,v pOllats ,.lnd -'0

rest points, obtained from it semi-empirical model based on

'.hree design _ariablcs. is useci tbr a _,hcar ci_axial inlcdtl_r

clement. Data for supersonic turbine design is based tm :,ix

design xariabies. 76 training data tll]d 15 It:',[ ,._J,.lta ,)Dl_lil]ed

from simplified aerodynamic analysis. Sc\'eral RS and NN are

first constructed using the training data. l'he test data are then

employed to select the best RS or NN. Quadratic and cubic

response surfaces, radial basis neural netv, ork (RBNN) and

hack-pr(_pagation neurtil net_)rk IBPNN ) are c'_m_parcd, l'_ _-

layered P, BNN are generated rising t\'.,'{) ditterent ;raining

ilig(qlIhnls, [_alglelV. _t)/l('l/_(' atld _¢H'vcll'? '_. !'._,{_-[a\cI-cd

BPNN is generated with lan-Sigmold uans[cr lunct|orL

Various issues related t,_ the training {_t the neural nctx_orks

_ie addressed, ilictudin,z fItHllbcI • _[ [ICtlltHl",. _ ,rl(;I "(_[[_

_[)l't'tld ('e)II,','IHIIIY, and tile accHracv t)l diJfcrcnt 111ode[s tn

representing the design space• .X search t_r !he optimum

design is carried out using a standard, eradicnt-bascd

_p|lmlZall_H1 alH{}l-ilhm {_,,er lhe rcsp(mse '.,Hllaccs icDlesclltcd

i_,, !+1c poi}ll,,Hlli;_ds and tr;.tincd i]etna[ nctv,_qks, {">LliAi[', _t

JLIDLc polynomial performs better than ;Inc ,+L1..tdr;.ItlC

p_)l.,,nomml but exceptions have been ROllccd. •\mollg the ,NN

choices, the RBNN designed using .s(,lrerb yields more

,.'O n.',lS te nl performance for both cnEil]C . Olglp()ncnts

considered. Fhe training of P, BNN is eas_cr as it reqmrcs

linear regression. This coupled \_lth die c,,n>tstcnc; an

performance promise the possibility _t it being used as an

_,ptimization strategy tbr engineering design problems.
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1 INTRODUCTION

1.1 General Background

Advanced rocket propulsion systems are being

pr<)posed to meet goals for increased performance,

robustness, and safety while concurrently decreasing

x_eight and cost. These new goals are forcing consideration

,>1 desi_,n variables oxer ranees and in combinations not

tSpical_y employed, thereby increasing the design space

c,_mpiexiLv. Objecti:e ,:tnd efficient evaluation of these new

and complex designs can be facilitated by, development and

implementation _)1 s,,stematic Iechniques. Accordingly,

Response Surface Methodoh)gy _ {RSM) and Neural

Netv,'ork- (NN) techniques have been used to generate

_,urrogate models representing data obtained from complex

numerical and experimental simulations. An optimization

aleorithm is then used to _ntermgate these models for

,,pt_mum design conditions, based _m specified constraints.

!n this ,,mdv. ,.he p;climinary desien i,,sucs related to rocket

propuisum c_mponents, including gas-gas injectors and

>_upers(mic turbines have been investigated. The objective

,t O_i_, cIli,rt _s {,_ :>>ess rciatr_e pcrf,,rmance or RSM and

NN techmqucs in _epresemqng the de_qgn space.

•\ polxnomial-based RSM. in which the desion

Nmce is represented with quadratic and cubic polynomials

in lhc Jcpendent ',ariahlcs. is used. The polynomial

,,_ei(ic,ents are _,brained bx linear regression. The

:ll:.lXlfllunl t)r the minimum (ff ltle surface can then be

i_cated using a gradient search method. Response Surface

methodoh)gies have been used before for rocket engine

_m_ponent design. For example, Tucker et al. -_ have used

RSM lor rocket rejector design. ['he approach is not tied to

,in?.' _,pec_fic data type or >_urce. The dimensionality of the

data is n()t a concern, and data {_btained through both

numerical and experimental methods can be effectively

used. RSM enables the designer to combine any number of

design variables for different types ot injectors and

propellant combinations. This generality allows the

consideration of information at varying levels of breadth

_i.e.. ,,,cope of design _ariables) and depth _'i.e., details of

the desi,an variables _.

The RSM is effective in representing the global

characteristics of the design space and it filters noise

associated with design data. Depending on the order of

polynomial employed and the shape of the actual response

suttee, the RSM can introduce substantial errors in certain

reeions of the design space. Shyy et al. 4 have showed it that

,Jbs_ _..\11 variables are normalized bv thmr respective baseline values_.
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for a given injector design, a third order response surface
performs better than a second order surface. Generation of

polynomial based surfaces can be costly Ior cases involving

many of design variables due to the amount of data required to
evaluate the coefficients. In fact, the number of coefficients

increases rapidly with the order of polynomial. For example, a
complete second-order polynomial of N design variables has

fN+IitN+2_/(2!) coefficients. A complete cubic model has
IN+ l)(N+2)(N+3)/(3/) coefficients. The choice of order of the

polynomial and the terms to be included depends on the

design problem. Many combinations of terms may have to be

tried to represent the design space before the best one can be
selected.

An optimization scheme requiring large amounts of

data and evaluation time to generate meaningful results is of
limited value. While the preliminary designs can be

accomplished with empirically based information, detailed
designs often require use of data from experiments and/or

computational fluid dvnamics ICFD) analyses. This data can
be lime consuming and expensive to generate in large

quantities. Recently. NN have been used to represent the

m_de/s instead of the more typical polynomial RSY,1. \V,_rk in
the area of NN by Shy,,,' et al. a and Papila et ai." have shown

that some NN can perform well even \vhcn a modest amount

of data is available. In particular radial basis neural networks
{RBNN) like polynomial based RSM require only linear

regression l'¢_r training and have proven to he particularly
accurate. Norgaad et al) and Ross ct al. have inxcsngated the

feasibilit,, {_l reducing wind tunnel test runes by m, ine NN to
]lltcrpohlte bet\_cen nleasurelTicnt:-, and demt_n:-,trated ct):-,l

,,avings, These works have focused tm using the NN lo predict
data. Attempts to use the net;york as a function e\a[tl._alor and

then to link it Io lhe t_ptimizer ha,.e bccn made bx l_r_lzcl ct
al. s. P,ai and Madavan" and Greenman :and l_,oth'_(

NN are highly flexible m functional form and hence
can _ffizr significant potenti:d t,_r representing complex

lunctions. Networks. like RI3NN, that are 1]cxiblc and employ
linear regression methods can use b_th ol these pr_perties tt_

improve the perlormance. The number _q ncurons in the
network, size of the region over which the neuron _s sensitive.

and the training accuracy of the network are st_me of the
parameters that need to be selected in a nct_rk. Fhese can be

determined bv comparing the perlormance _ NN designed
\v]th different values t)f these parameters. Neural netwc_rks can

be effectively used in two ways. First. they can t_e used in
conjunction with RSM. In complex regions of the surface, the

NN can be trained using the existing data. The trained NN can

then be used to generate additional data to augment existing
data, thus possibly enhancing the accuracy of the surface in

!hat particular ',area. Such an approach _as Jnve_,tigated by'
Shvv et at a. This v,ork demonstrated that the NN could indeed

_ield additional information to help generate more accurate
polynomial-based response surfaces. Second. NN can generate
data to be used directly m conducting gradient-based

optimization. In other words. NN can perform the role of

either enhancing the fidelity of a polynomial-based response
--- surface, as in the first approact_, or generating information as

_nput to an optimizer bv itself without resort,ng to a

polynomial representation, as in the second approach. Either
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way. the only function evaluations required are for the

points sought by the optimizer, which searches the design

space based on the sensitivity of the response to the
perturbations in the design variables.

1.2 Scope
The present work is aimed at a direct comparison

of the RSM and NN techniques in terms of accuracy and
efficiency; the hybrid RSM-NN scheme noted above will

not be used here. Both techniques are applied to data used

in the design of two rocket engine components: a shear co-
axial injector and a supersonic turbine. Variations of each

technique are evaluated. Both second and third order

polynomials will be used for the Response Surface (RS).

Two NN schemes, radial basis and the more commonly
used back-propagation NNs are used. The same database

tk_r each component will be used to train both the RS and

the NN. Both will then be linked to an optimization
procedure. "/'here is little rigorous theory in the literature to

establish the desired framework l\)r a clear comparison
between the performances of the two techniques. However,

lhis ',_ork provides an assessment ,q" the techniques

regarding their practical use in the rocket engine
component design process.

2 APPROACIIES

2.1 Summary of Analytical Models and Design
Variables

I'_ko comptments _l a rocket propulsion system
have been considered here, the in ector and the turbine.

First. a shear c{_axial injector element that uses gaseous

_x,,gen GO:)and _ascmJs hydn_gen _(;tt:_ as propellants
_s used to investigate the relative performance of RSM and

NN in the design of rocket eneine injectors. The original
data set from fucker et al _ ¢45 design pointst is used to

generate quadratic and cubic response _,urfaces for both,

energy' release efficiency {ERE). a measure of injector
perlBrmance, and chamber wall heat flux {Q). These 45

design points are evenly distributed over the design space.
ERE ,,,,'as obtained using correlations taking into account
combustor len,,th_ . L,,,,,,, tlen,,th= from rejector to throat), and

Jhe propellant velocity ratio, l'/I',. The nominal chamber

wall heat flux at a point .lust downstream of the injector,
Q ........ v,'as calculated using a modified Bartz equation. It

was then correlated with pn)pellant mixture ratio, O/F, and
propellant velocity ratio, V/V, to yield the actual chamber

wall heat flux, Q. The accuracy of each polynomial fit on

the original data set is evaluated. Two different types of
radial basis NN tRBNN) and a back propagation NN
{BPNNt are also trained to represent ERE and Q. Each

surface is then used to conduct design optimization over the

same range of independent variables. "/'he optimal design
points are compared with exact points calculated from the
empirical model of Calhoon et al t_. The range of design

variables considered in this study is shown in Table 1.
Tx_nty additional data points that are not used in the

generation of response surfaces or the neural networks are
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used to assess the accuracy of different variants of RSM and

NN.

The other propulsion system componem examined is

a supersonic turbine where the preliminary design is

conducted by one-dimensional aerodynamic analysis using

FpgenML 12. FpgenML generates a l]owpath and runs a

preliminary meanline calculation on this flowpath. In this

study, a single stage turbine has been considered. There are six

design parameters and four output variables involved in this

design process. There are 76 design points available lot

training. These 76 points were selected b_ using a face

centered composite (fcc) design. Instead of 77 design points,

as would be provided by a/co design flJr six ;ariables, only 76

were available since the meanline code could not converge for

one of the designs. The design variables are the mean

diameter, D, RPM, blade annulus area, A ....... _ane axial chord.

C,., blade axial chord, Co, and stage reaction. L. These are

parameters influencing the _tructural properties and

perlormance of the turbine. Overall etticienc\ of the turbine,

_1, turbine weight. W, a lumped inertia measure. ¢._,Vi: qA...... ,

,RPM):) and speed at pitchline. '(,,,,,, i l).'¢ RP.W_are chosen as

dependent xariables. The m}al is I_ maxunlzc !he i[lclementai

payh)ad (&my). which is derived from turbine _cioht tW) and

efficiency I_l). Therefore. the obiecti_e e, a tl0si.gn _here W i,,

minimized and 77 is maximized. [)tie to flae >tructural

considerations, constraints have to bc imposed t_n IANF" and

Using 18 additional sin/ulations, di_,tnbuted x_nhin

:he design ',pace. the acctlracv ,q the i_l_dc[:, t,, tc_,lcd. The

ranges considered tbr the design xanablcs and lhe dependent

_ariables are shown in Eqs. 111 and i21

t:_r tile design vari.:.lblcs: _
[.496 > D > (/.0502

1.4 > RPM > t).O

1.3 > A .......> 0.099 _-

1.700 > C > 0.394 !r

1.143 > (':, > 0.264 {

I).O> k_> 0.5 J

l:t,l dependent variables:

1.i 10 >q > 0.223

_!.bOl > _V> I).422

2. 197 > c.l,'V): > 0.343

I.$49 > V,,,,,, > 0.0484

k

i

All the variables involved in the de._gn process are

normalized by their respective baseline values.

used to represent the composite function. For example,

Tucker et al 3 used a geometric mean to combine their two

objectives, ERE and Q. The composite desirability is of the

torm

l

D= Hd, 'l_

/

(3)

where D is the composite objective function, di's are

normalized values of the objective functions and l is the

number of objective functions.

Another way of constructing a composite function

is to use a weighted sum of the objective functions. The

composite desirability function can then be expressed as

I

D = £c(,f (4)
, i

,shere D is the composite objectixe function andf's are the

non-mwmalized <_bjective functions. The o_,'s are

din_enslonai parameters tilat contn4 the importance of each

objective function.

For the rejector, the goal is to maximize the

energy release efficient;'. ERE while minimizing the

chamber wall heat flux. Q. This is achieved by maximizing

a cmnpositc objective ftmctitm ei,.cn bv Eq I51.

i) = !u,.,:,d,) " 15)

', here _he n_,rm:dizcd functl,ms arc detined in F-qs. (6) and

,7_. In tile ca_e ',_hcre a response ,,hould be maximized,

:.,Llch as tiRE. the re)finalized funcuon takes the form:

I:RE- A ,
,/ .. fi)r A i I:'RE £ 13 I0)

H - .t

_here B is the target value and A is the lowest acceptable

value. We set dt.m:- = / t\w any ERE > I3 and ctFRE = 0 for

ERE < ,_. The choice of .s is made based on the subjective

_mportance _q tiffs objecti_e in the composite desirability

functum, in the case where a response is to be minimized,

_,uch as (). the normalized functum takes on the torm:

=E-Q]d,._, _ Ior C S ERE N E (7)

2.2 Objective Functions

When attempting to optimize txw) or more different

,)bjective functions, conflicts between them arise because of

the different relationships /hey, have with _he independent

parameters. To solve this problem, a multi-objecttve _:

approach is investigated in this stud','. Itere, competing

__ objective functions are combined to a single composite

objective function, The maiimization _t the composite

funcuon effectively provides a compromise between the

individual functions. ,.in average of ,,,ome l\_rm is normally

where (" is the target value and E i.,, the highest acceptable

_alue. VCesetd o= / foranyQ< Candd o=OforQ> E.

A, B, C, and E are chosen according to the designer's

priorities or, as in the present study, simply as the boundary

values of the domain of ERE and Q. The value of t is again

chosen to reflect the importance t)t' the objectives in the

de_on in the study A and B are equal to 95.0 and 99.9,

respectively. Values of C and E are equal to 0.48 and 1.1,

respectively.'. Both s and t were set to a value of 1.



in thecaseof theturbine,aweightedsumofthetwo
objectivesrl and W has been used. The expression, in the

context of the turbine gives the incremental `.'alue of the

payload with the change in !47 and r/. The goal is to maximize

this incremental `.'alue, which in turn results in minimum B"

and maximum r/.

D = Apay = ClxlOO×(rl- rlb)-C,_x(W-W,,) (8)

,,,,,here CI = the amount of payload increment capacity lk)r

any efficiency gain

C, = the amount of payload increment c:.lpacity t\)r

any weight gain

71= the calculated efficiency

rh, = the baseline efficiency

W= calculated weight

'_Vb = the baseline ,,,,,eight.

The baseline efficiency and ,,,,eight are obtained u.,,ing

existing design kno`.vledge without benefiting lr_m an

_ptimization strategy. ['he ,.,.'eight ass_ciated _ith 17 expressed

_n percentage, by multiplying it with 100. i>, ('. 4tld tile \_,elght

associated with W is C_,. This relationship is deveMped based

on detailed turbopump design pmce.,,scs, l:_r ,_ne percent

increase in efficiency a payload increase of ('.lbs can be

achieved, and as the ,,,.,eight of the turbine increases the

payload has to be correspondingly dccrea_,ed by a factor _I (',.

2.3 Response Surface Methodology (IlSM)

Polynomial RSM constructs polynomials _I assumed

_rder and unknown coefficients based on regression analysis.

Yhe ',tflutlan for tile _,ct _I cL_clticicnts dnal I_cst tits lhe

hainlrlg data is a linear least _,quarc pr, fiqcm, lhc number ,_l

,'_)elli,..'icnts to be evaluated depends _)rl the _rder _I

Dfl},nomial and the number ot design parameters in`._fl`.ed.

.\cc_rding to the iniect_;r model dcxehq-_ed bx

('alhoon ct al t_. injector performance, a_, mca.,,ured tw ARF.

depends only on the velocttv ratio. _.¢'t',,. and combustion

chamber length, Lr.,,m_. Therefore, only 15 distinct design

points are available for ERE. Since chamber x_all heat I]ux

depends only on the velocity ratio. _',,q' . and the oxidizer to

fuel ratio. O/F. there are 9 distinct design points Ior (2 The

dcsign space for this problem is depicted in l:i_ure 1. For ERE.

the "_ distinct chamber lem, ths oli;er the potenlial for a hmrth-

_rder polynomial lit in L,,,,,,,. while the three different veh)citv

ratios limit the fit in V/V, to second order. Quadratic and

cubic response surfaces for both ERE and (2 have been

generated /'or evaluation. The above-noted limitations on the

data. limits the cubic surfaces to be third order in l ........ ontv.

.ks already mentioned. Io ctmstruct a complete

quadratic polynomial of N design variables, the number of

coefficients required is (N+l)(N+2)/(2.'). In the turbine case

with 6 design variables, we would need to estimate 28

coefficients. A complete cubic model would require

_N+lH,.¥+2)_N+3)/(3/) or 84 coefficients and limr levels.

_. Since the data available is--not, sufficient to e`.aluate all the

cubic terms, reduced cubic models are einplo.ved.

The response surfaces were generated by standard

least-squares regression using JMP t4, ;._ statistical analysis
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software package. JMP is an interactive, spreadsheet-based

program having a variety of statistical analysis tools.

Statistical techniques are also available for identifying

polynomial coefficients that are not well characterized by

the data. ,\ stepwise regression procedure based on t-

statistics is used to discard terms and improve the

prediction accuracy. The t-statistic, or t-ratio, of a particular

coefficient is given by the value of the coefficient divided

by the standard error of the coefficient, which is an estimate

of its standard deviation. The accuracy of different surfaces

at points different from the training data can be estimated

by comparing the adjusted root mean square error defined

as:

(9)

ltere e, is the error at i _' point of the training data, n is the

number of training data points and % is the number of

coefficients. When the data contains uncorrelated Gaussian

m)ise, cy, pro,,ides an unbiased estimate oI that noise. Even

when the error is not solely due to noise _, provides a good

overall o_mparison among the different surface fits.

The accuracy of the models in representing the

objective functions is also gauged by comparing the values

,_t ttle _,bjecti,,e function at test design points, different

from those used to generate the fit. The root mean square

2Frill. (3- for the test set is ellen b`.:

t . -

Ill

_I0)

In this equation e-, _s the error at the _'" rest point and m is

fl_c number ot lest points.

2.4 Neural Networks

Two different types ol NN have been used,

namely radial basis > and back-propagation ts. The training

process of the network is a cyclic process and the weights

and biases of the nodes _t the network are adjusted until an

accurate mapping is _btained. This trained network can

then predict the values of the obiecnve (or any new set of

design variables in the design .,,pace. The neural network

loolbox _ available in ._,latlab is used ti0r the current

analysis.

2.4.1 Radial Basis Neural Networks (RBNN)

Radial-basis neural networks are two-layer

networks with a hidden laver of radial-basis transfer

function and a linear output layer (Figure 2). RBNN

requires large number of neurons, depending on the size of

the data set. but they can be designed in a small amount of

time. This is due to the fact that the process of determining

the_weights associated with the large number of neurons

uses linear regression. Thus, the',' may be efficient to train

when there are large amounts of data a'_ailabte for training.



The transfer function for radial basis neuron is

radbas, which is shown in Figure 2b. Radbas has maximum

and minimum outputs of 1 and O. respectively. The output of

the function is given by

=,a,t as(eli,,(w.V)×l,) (11_

where radbas is the transfer function, dist is the _ector

distance between the network weight vector, w and the input

vector, p, and b is the bias. In a radial basis network IFigure

2a} each neuron in the radbas hidden la_er is assigned

weights, w, which are equal to the _alues of one of the training

input design points. Therefore, each neuron acts as a detector

for a different input. The bias lor each neuron in that layer, b_

is set to 0.83261sc, where sc is the spread constant, a value

defined by the user. This defines the region of inlluence by

each neuron. The whole process is then reduced to the

evaluation t>l the weights, w2, and biases, h-. in the output

linear layer, which is a linear regressum problem. If the input

it) a neuron is identical to the _ev, ht+_ ,,cct_t-, the output of that

neuron is 1. since the elfecti;e input to Ihe transfer function is

zero. When a value t)f 0.8326 is passed througi+t the transler

function the output is 0.5. For a xector distance equal to or less

Ihan 0.8326/b, the output is 0.5 or more. The ,?re, td ccmw, mr

defines the radius of the design space uxcr which a neuron has

a response of 0.5 or more. Small values,,f v,' can result in poor

les{+)i)nse in a domain n_>t c]i)sc]x hK'illcd h) FlCtllOn [)c,,'.,ilh)ns.

that is, Ior inputs that are iar lrom the ua_nin,,: data 4s

,_omparcd to the defined radius, the Ic>p_qlsc l>qn the iletllt+)n

wLll be negligible. Large values will rcsutt in low sensitivity of

neurons. Since the radius _)l sensiti'+'itv is larue, neurons v+hose

,aelehts are diit;,?rent lr_ml lhc input _aiuc_, i_x a Mrgc :llllOUi]I

',_111still ha\e high output thereby rcsuhmg m a l]at nctx_ork.

[he best value of the spread c(m.rtant h_r s_nne tc:-,t data can be

found by comparing o" tot netv¢orks _ith dilfcrent wrcad

, , ;IIYIt.IIII'.Y.

in ,thtthtb, radial-basis net_+I+ks can {_e designed

usm,- two different design procedures, solvcr,6o and sotvcrh.

Solverbe designs a network xt.ith zero error ,_ll lhe training

vectors bv creating as many radial basis neuruns as there are

input sets. Therefore, soiverhe may result in a larger netv,'ork

than required and map the netx_ork exacth', thetebv Iittin,g

nutnertcal noise. A more compact design in tcrms of net,neck

-,ize ,s obtained from ,solvcrb. which creates ,,ne neuron at a

lime to minimize the number ,_t neunms required. At each

cpoch or cycle neurons are added to the net'xork till a user

specified RMS error is reached or until the network has the

maximum number of neurons possible. The design parameters

for rolverb are the spread const,gtnt, a user defined RMS error

',,oa]. and the maximum number <_t epochs t_hereas it is onh'

the spread constant for solverbe.

In case of the injector design there are two objectives,

namely ERE and Q and for turbine the objectives are r/and IV.

Figures 3 and 4 give the variation of <7for the network design

\vith soh'erbe lor the objective functions of the two engine

_- components. In case of sol_"erb.'the error e,oal during training

also defines the accuracy oil the net_,,ork..\n t+jective _1

tittin,a a numerical model is re> remove the noase associated
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with the data. A model, which maps exactly as solverbe

does, will not eliminate the noise, whereas solverb will.

Figures 5 and 6 give the variation of <7 for the network

design with soh'erb for the objective functions of the two

engine components.

By comparing Figures 3-6 it can be seen that for

low values of spread constant the NN network has a poor

performance. As the spread constant increases a

asymptotically decreases. However, as demonstrated by

Figure 5a the perlbrmance of the network can deteriorate

for higher values of the spread constant. The region with a

large variation in <7 is highly unreliable because this

indicates a high sensitivity of the model to a small variation

of spread constant and possibly the test data, in this region.

Hence the desirable spread constant is selected from the

region where the performance of the network is relatively

consistent.

Figures 5 and 6 also show the influence of error

coal on the network. Generally it" a network maps the

+,raining data accurateh, it can be expected to perform

cfficienth' with the test data. However, accurately mapping

nois,, data may result in poor prediction capabilities for the

network. The variation in the performance is not significant

except for the ERE and Q network IFigure 5), where the

poor performance of the network at high values of spread

constant improves tbr a larger error .goal. This may

indicate the presence of noise in the data |or ERE, which

_(dverh is able to eliminate with an appropriate error goal.

Fief,re 7 ,,hov, s variatums in number of epochs and <7 with

the _ariatnm of error k'oal ltw a gLven spread constant

when RBNN is designed with .wdverb. The number of

ncunms in the net_ork i_, _,nc more than the number of

cp_chs. I)nc expects that as the crr(;r goal increases the

number _,t epochs becomes smaller and the network

performs le.,,s accurately as in lzigures 7a and 7b. However

as demonstrated by Figures 7c and 7d. a more stringent

,'trot vna/ Ik_r the training data does not necessarily result

m better predictive capability against the test data. Less

accurate network can be designed for these objectives,

\vhich have smaller prediction error.

When choosing an appropriate network the above-

mentioned features have to be considered. The perlbrmance

_t the constructed NN is best .iudged by comparing the

prediction error as gtven in Eq. t lOI, for different networks.

[:sing soh'erbe, networks are designed with varying spread

constants and the one that yields the smallest error is

selected. When soh'erb is used. networks are designed for

different spread constants and error goals. The network

that gives the smallest error for the test data is used. The

details _)t the networks ,_elected are discussed in later

sections.

2.4.2 Back-propagation Neural Networks (BPNN)

Back-propagation networks are multi-layer

networks with hidden lavers of sigmoid transfer function

an d.a linear output layer _Figure 8). The transfer function in

the hidden layers should be differentiable and thus, either

Mg-slgmoid or tan-slgmoid functions are typically used. In

this stud'+', a ,_ingte hidden laver with a tan-sigmoid transfer



function,tansiy,, (Figure 8b) is considered. The output of the

function is given by

a = tansig ( t_Cp + h) I 12 )

where tansig is the transfer function, w i_ the _eight vector, p

is the input vector and b is the bias vector. The maximum and

minimum outputs of the function are 1 and -1. respectively.

The number of neurons in the hidden layer _f a back-

propagation network is a design parameter. It should be large

enough to allow the network to map the functional

relationship, but not too large to cause oxerfitting. Once it has

been chosen, the network design is reduced to adjusting the

weight matrices and the bias vectors. Since for BPNN the

unknown weights are in the nonlinear function, the training

process requires nonlinear regression, which is an

optimization process. This optimization is usually performed

using grad

ient methods. In Matlab, back-propagamm netv_orks can be

tanned by using three different training Iunctlons. zrambp.

:rambpx and tramlm. The first two are based _m the steepest

descent method. Simple back-propagatlon wlln it, troOp Is

usually slow since it requires small learning rates for stable

learning, l)zwlbpx, applying momentum _r adapti',e learning

rate, can be considerably faster than trambp, but tramlm.

applying Levenber_-Marquardt optimizamm *_, is the most

clficicnt >ince it i,, based on a more cHicienl ,_{,tHnizallon

algorithm

!he design p_lrametcl>, I_H t'FH/H[??? 41e the :ltnnher _I

neurons in the hidden laver, a user defined error eoai. and the

maximum number of epochs. The training continues until

citiler the error q,oai is reached, the :n_n_mum C:Tor 2radient

_ccurs or the maximum number {ffep{}chs has been met.

t:or BPNN. the initial weights and biases are

randomly generated and then the optimum ,.,,'eights and biases

;_re evaluated through an iterative pracess. ['he ,amghts and

biases are updated by' changing them in Ihc directum of dmvn

qope '_,.ith respect to the sum-squared error of the network.

'ahich is to be minimized. "['he sum-squared error is tlae sum t)t

the squared error between the network prediction and the

actual xaiues of the output. In BPNN l l:ieure 8a) the weights.

we. and biases, b z, in the hidden twlsiV la\er are n_t tlxed as in

Ihe case ,_! RBNN. Ilence, the weieht,.,, have a nonlinear

relationship in the expression between Ihe inputs and the

_mtputs. This results in a nonlinear regres,,,_on problem, which

takes a longer time to solve than RBNN. Depending upon the

initial weights and biases, the convergence to an optimal

network design may or may not be achieved. Due to the

randomness of the initial guesses, if one desires u_ mimic the

process exactly for some purpose, it is impressible to te-tram

_l_e netv,ork with the same accuracy or convergence unless the

process is reinitiated exactly as before. The initial guess of the

weights is a random process in Matlab. Hence to re-train the

network the initial guess has to be recorded.

The architecture is decided based on past experience

_. with similar kind of datas_: For a given objective the error

7oal is fixed and the number" of hidden layer neurons are

', aried betv, een 2 and the totalnumber of inputs. Each network

is retrained few times so its to start the _,earch from random
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initial weights and biases. The networks that do not achieve

the error goal are discarded. Among the converged

networks the selection of the best network is made based on

the value of o'. The goal is to attain as low a value for o" as

possible. The number of neurons in the hidden layer is

increased one at a time till the error goal is achieved and a

small value of o" is obtained. Although this method may not

be the best way to obtain the best BPNN, it is considered

adequate for the current study. At times larger network has

a high value of o, which maybe due to overfitting of the

design space. To prevent the model from converging to a

local minimum, an iterative method is used as suggested by

Stepniewski et al _6. The obtained network is retrained with

initial weights obtained by perturbing the weights of the

,_btained network.

w= w +Zrw, (13)

where w is the initial weight xector tbr the network to be

Ira/ned, w,, i_ the weight vector of the obtained network. J,

is the level of perturbation I0.11 and r is a matrix of random

numbers between-1 to 1.

2.5 Design Optimization Process

The entire optimization process can be divided

into two parts:

!1 P, StNN Iralning phase for establishing an

approximation,

2) ()ptim_zer phase.

In the first phase, RS _r NN are generated with the

available training data set. [n the ._econd phase the

,,ptimiz,2r uses tile P, StNN during the _,earch for the

optimum until the final convereed solution is obtained. The

italia] scI of design variables i> randomh' selected from

_ithin the design space. The flov,'chart of the process is

>]lown in Figure 9.

The _ptimization problem at hand can be

formulated as mm{J(x)}subject to lb <_ x <_ ub, where Ib is

the lower boundary vector and ub is the upper boundary

vector of the design variables vector x. [f the goal is to

maximize the _bjective funcmm then li.v; can be written as

-k,f.v). where t,,t.v) is the objecuve functitm. Additional linear

,w nonlinear c_mstraints can be incorporated if reqmred.

I'he present design process does not have any such

additional constraints. The _ptimization toolbox Iv in

_latlab used here employs :t sequential quadratic-

programming algorithm.

3 RESULTS AND DISCUSSION

The RS and NN are constructed using the training

data. The test data is then employed to select the best RS or

NN. Specifically in RSM, the difference between the RS

and the training data, as given by Eq. (9), is normally used

to judge the performance of the fit. The additional use of

the'test data helps to evaluate the performance of different

polynomials over design points not used during the training

phase. This gwes a complementary insight into the quality



of theRSoverthe design space. For both the rocket engine

components, different polynomials were tried. Table 2

compares the performance of different polynomials used to

represent the two objective tunctions of the injector case, ERE

and Q. Starting with the all the possible cubic terms in the

model, revised models are generated by removing and adding

terms. Similar kind of analysis is also done tbr the turbine

case. The best polynomial is selected based on a combined

evaluation between _,, and or.

For the NN, the test data helps evaluate the accuracy

of networks with varying neurons in BPNN and varying

spread constant in RBNN. Thus the test data are part of the

evaluation process to help select the final NN. Based on the

RSM or NN model, a search for optimum design is carried out

using a standard, gradient-based optimization algorithm over

the response surfaces represented by the polynomials and

trained neural networks.

3.1 Shear-Coaxial Injector

According to the a`,,ailable data. !he in!error

performance, ERE, depends only on the \elocit', ratl_, t,/11,,

4nd c_mbustion chamber length, L ......... which indicates 15

distinct design points for ERE. The chamber wail heat Ilux, (2,

depends on velocity' ratio, V,/V,,, and oxidizer to fuel ratio.

O/F, and has nine distinct points. For ERE. as _,een ti-om

Figure 1, five distinct levels t\_r l.,,,,,,,, offers ttle potential tot a

fourth-order polynomial fit in the same. while three different

vole, city ratios and oxidizer to ttle[ ratio limit the lit in the.,,c

_ nriables 1o second order.

A reduced quadratic 4zld 4n _ilcolllpletc ctibl,,.

response surfaces are used lbr the t`,\o obiect_ve (unctions. The

first model in Table 2a and the sixth mdel in Fable 2b are the

-,ciected cubic models for ERE and U. _espectixe[}. iherc is

no noticeable improvement among the remaining cubic model

Ior ERE. For O. the selected model is the best m terms of or,,.

:flthough there are other models with identical \:flue _I or.

ERE = 70.43-- 580V /_, , 6.208L

-0.33 l L ......):

....... _ 190{_' ! ......

_i4_

_=11.479-(1.0460/f'+0.191!," /I -t1.(11)9¢C_/!-,

-_) 02SIO/t"t _, ,"_ , . i5

ERE =50.059+3.758V /1 --14..'_J. L ,,, -!).05_. ' /1, )

-0.777(Vj /V,)L ,,a, -1.459[L,,,,,,)'- + 0.O02tV, /1, I ): L,,,,,,

V '++0.046V, / ,,(L,,,,,,,)- 0.047(L_,)- 116}

Q=-_).566-0.35801I: +O.383V, /_, O.Ol9110/ l:i:

-O. 107(O/ F)V, /V -O.003(V, /V)" +O.O05(O/ F !:l'. /V,

+O.O02(O/ F)(V/ /V '- t17)

Equations (141 an_" (1'51 are the reduced quadratic

responses and Eqs. I I6t and !I:7) represent the reduced cubic

polynomials used for the two obiecn`,,e functions, lhe t-
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statistics for the coefficients in Eq. ( 141 vary between 49.30

and 8.06. For the coefficients in Eq. (151, they vary

between 6.28 and 0.52. In Eqs. (161 and (171, the t-statistics

of the coefficents vary between 14.69 and 0.31 and 3.36

and 0.74, respectively.

The radial basis networks designed with solverbe

are the largest with 15 neurons in the hidden layer for ERE

network and nine neurons for the Q network. Solvers

designs a network for ERE with 14 neurons in the hidden

layer and a network for Q with eight neurons. Compared to

RBNN. BPNN has fewer neurons, the number of neurons in

the hidden layer are eight and four for the ERE and Q

networks, respectively. Details of the networks used are

listed in Table 3. The spread constant used for RBNNs and

the error goal of the training data is also given in Table 3.

The spread constant values are selected from the region

where the performance of the network is consistent with the

variation of spread constant (Figures 3-6/. The error goal,

in the case of solverb, is selected based on the network with

the best performance for the ideal spread consto.nt (Figure

71,

The error in predicting the values of the objective

function by different schemes is gi,,en in Table 4. Several

_bservations can be readih made.

t. Both NNs perform better than the RSM for this data

bet.

2. Both .voh'erbe and .soh'erh are of comparable

per/ormance.

3. The BPNN helps generate .smaller networks and

perlorms at par in comparison to RBNN.

4 The cubic polynomial is more accurate than the

qtladratic one.

lhe \:.llio[is modcis generated are compared with

test data m Figures [0 and 11. The curves representing the

NN predictions are closer to the data obtained from the

injector model than the RSs thereby demonstrating that NN

models are able to predict better than the RSs. BPNN

pcrlorms as \,,ell as RBNN but tends to be fiat. Due to its

Io_er order, Ihe quadratic polynomial is flat. The cubic

polynomial is able to perform better than quadratic.

The optimum solution obtained from various

,themes is sho`,,,n in /'able 5 and Figures 12 and 13. The

:tim is to maximize ERE and minimize Q. The trend of the

oblecuve tuncuons in the design space is monotonic and

hence every model is able to :,elect identical optimum

design for the given constraints. The flatness of the

polynomials results in bad predictive values of the

objective function for the optimum design. The cubic

polynomial is more flexible than quadratic but is not

consistent. For a t',A'<, constraint o1"4 the quadratic

polynomial is more accurate but for higher values of V/V,,

the cubic polynomial is more accurate. In contrast, the NN

models are able to perform ',veil. Since the optimum design

happens to be the same as one of the training points,

soh'erbe is able to predict the values of the objective

function accurately. Soh'erb pertorms equally well, thereby

showin_ the capability of performance v<ith fewer neurons.

Performance of BPNN is not as satislactorv as suggested in

Fable. 4. For lower constraints of VA";,, it pertbrms poorly



butforhighervaluesof V/V,, it is good. This may be due to
the selection of fewer neurons in the hidden layers of the

networks. Overall, it is still better than to the RSM and

demonstrates the flexibility of NN over RS.

As stated by Papila et al 5, when it comes to choosing

between NN and polynomials, polynomials are easy to

compute. The number of coefficients might be numerous but

the linearity of the system expedites the process of coefficient

evaluations. This is also the reason RBNN train fast. On the

other hand, the weights of BPNN are evaluated through a

nonlinear optimization, which slows the training process. Of

all the NN presented here, the one designed with the help of

_olverbe is the fiastest to train since the values nf the weights

are set to values of the input dependent variables. Solverb

trains with the addition of one neuron at a time with weights

similar to the input and hence is slower.

3.2 Supersonic Turbine

The generation of RS and the training c_t the NNs are

&me with the 76 design points in Table 5A. The analysis was

initially done without the constraints and _hcn _._,ith the

constraints on cAN)" and V.,_:,_,.

A quadratic RS was initially generated. I'hen. cubic

_erms ,_ere included. Cubic terms that are products ol three

different ,,ariables were included because ,_1 the number of

data available and the number of levels being tt]rce. l'be trend

_)t the design data also suggests the presence of some ,_t these

lerms. ThereR_re. the initial cubic cquatitm has 45 terms. _\

_cduced third order RSs for I7 and W was _,ciectcd ba_,ed L_n the

_elati,,e performances of different polynommb, _btaincd by

remo,,ing terms from the initial cubic equation ha.sod on t-

-;tatlstics. The cubic eqtmtion _as ,elected based _n [t_e

c,.aiuated value of or, and c;. l'ablc 0 _,uggcsts that me reduced

cklbic polynomial is better than Ihe quadralic t_olyn_mial ..,ince

c'r, 1_ better for the flormer, l'he values ol oare o_mparable.

The t-statistics lL_r the c<_etticients in the response

,urlace _>_"t1 \aries between 170.72 and 1.2. I'hc c_cilicicnts

in the response surface of W have t-statistics varying between

,";22.00 and (.I.68. "['he response surlaces Ior l 1 and IV are as

follows:

- 1._)_8 J .._,.,_ =tL654_-2.917D+5608.217RP),I _ "

•tL00729C r-0.00544(.'. -t._.0399/,. -L2S2D-

-]0283.057D.RPM -1.572×1017PM-' +5.__SD,_,_'' .......

-1._461.82_A_ _,,,RPM r0.0247C D_-114.407C RPM

-0.00647C " - 0.0124Cf - 0.163k_ D - 300.440,(_ RPM

-0.429k. A ...... - 0.00608k C - 0.00362k C. - t).0128k :

_54719.62DA RPM +387.74DC RPM -1.74_0.t ,Lann " ar r

-O.037DC" k_ - 5384.729A.,,,,, RPMk

-113 868C.. RPMk !lS/

W : 0,644 + 1.509D - 961.842RPM

-0.027-_ -0,00452C _i) 00-_ 2(" ().0255k

-3,S05D _ - 7040.35 ID. RPM -- ' ' '_._4,'-; DA .....
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- 13.012 A,,,," -- 0.00856Q D + 10.744Q, RPM

-0.00342C e -- 0.0104C,, D -- 23.359C¢, RPM

+0.0127C, A ...... --0.00609C,,: -- O.0686k , D

+93.527k RPM --0.227kA ...... --0.00324k, C

--0.00183k, C,, -- 0.00673k," + 93. 193DC. RPM

-- 162.604 DC, , RPM + 921.053 Dk, RPM

+0.342DA_,,nC_, -- 0.692 DA ,,,,,k , -- O.O162 DC,kr

--11.31 IC. RPM/% (19)

The networks designed with soh,erb have 37 and

75 neurons for t? and W. respectively in the hidden layer,

while those designed with solverbe has 76 neurons each.

The BPNN uses significantly less number of neurons by

generating networks with five and 60 neurons for t/and W,

respectively, in a single hidden laver. The NN architectures

chosen are listed in "Fable 7.

The accuracy of the various models is tested with

the data available in Table 6A and the error is shown in

fable _.._iohcrbe has a poor prediction for v7. which might

be due to overfitting, but pertbrms well for W. The outcome

,,t Table 8 for the supersonic turbine is similar to that of

Table 4 lbr the in.jector, except that BPNN is clearly

,nferior to RBNN. Overall. based on the two cases, it seems

that _oh'crh is most consistent among all methods

evaluated.

The ,,ptimum ,ohltions _,ubtected to the

constraints. _,t ¢,-L'J)-' limited to less than 1.132 Inormalized

\vith baseline value) and V;,,,,_, is limited to less than 1,148

: r>rmalizcd ,.,,ith baseline value), are presented in Table 9.

S } nee _ ''t '_:r _ " _ S [)1"_ }p_ )r t _ )_]il I t{ } the product ¢_t square of RPM

_md :t ........ md V.,;;,,_ is prop_rti_ma[ to D times RPM, no

NN/RS is generated for them. By comparing the predicted

i_ptimal design by the _arious methods, one observes that

,,dverbe and BPNN yield noticeably larger errors in r/and

W. respectively. Solvcrh and the response surface are more

consistent _th both _l and W. Judged by the error in

predicting A/my. it seems that the RSM is most accurate.

[[owever. >_nce the real goal is to maximize Apay. it is

_mportant _o note that the actual _alue <_f Apav tot the

,_pt_mal de.,,ign chosen bv the RSM is the worst. Clearly,

li_e farce multiplier in Eq. (8) causes bias in relative

_eighting betx_een t l and W, which in turn causes different

"apparent" accuracy levels by various methods.

From a design perspective, it is interesting to

understand the impact of the constraints from A,,,,, and Vo,¢n

on the optimal turbine parameters. Such an assessment is

_ttered in Figures 14 and 15. As D. RPM and A,,,, decrease.

_7, W, _5,,,,_," AN: and Apay decrease. C_, and C,. are almost

constant over the design space and they do not have any

noticeable effect on the objective functions and constraints.

In the case of Cv, the BPNN shows a small perturbation tbr

the analysis with the constraint. This might be due to the

tugs, ping of some noise by BPNN. Otherwise it is

_lnaffected bx the inclusion of the constraints. The stage

teaction. K, is unatfiected as expected, since we are dealing



onlywiththesinglestageof theturbine,ftencethereis no
splitonthestagereaction.

4 SUMMARYANDCONCLUSIONS
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In the present stud.,,,, the RS and NN are first

constructed using the training data. Ihe test data are then

employed to assess the performance of various polynomials

and to offer insight into model improvement by removing and

adding terms. The best polynomial is selected based on a

combined evaluation between or,, and or. [:_r the NN, the test

data helps evaluate the accuracy of netv_orks with xarying

neurons in BPNN and varying spread constants m RBNN.

Thus the test data are adopted to help select appropriate RSM

and NN models. Once an RSM or NN model is constructed, a

search for optimum design is carried out using a standard.

gradient-based optimizanon algorithm _wer the response

surfaces represented by the polynomutls and trained neural

networks.

Based c,n the results obtained. ,a¢ ha_c reached t)_e

following conclusions.

1. t li,.z,her order polynomials perform better than Mxver t_rder

polynomials as the',' have more flexibilitx. [h_xve_er,

appropriate statistical measure needs h_ bc lakcn (o

determine the best terms to include.

2. In the present stud>', both NN and I#,SM can perlorm

ct_mparably l\_r modest data sizes.

3. ,\mong all the NN configurati_m>. RBNN designed _ith

,_fl,,'erb seems to be more c()ns>tcnt in pcrlt)lmance b:t"

both in teeter and turbine cases.

4. P, adial basis networks, even _hcn designed clficienilv

',kith s(s[ver/L [cndt() ha'.,e I]'131]\ FTI()I'C neur_,ns than a

comparable back-propagation xv_ti_ lan-slgmoid _q-h_e-

si,_,moid neurons in the hidden la;ci-. I-he basic reason Ior

this is the fact that the sigmoid neurons can i/axe output.,,

,wer a large region ,_l (he input >pace, while tadia[ basis

l;curt>lls _lljX,' respond to ICl_.ltl\C{\ MIILI[J [C_IOIlS i_l the

input space. Thus, larger mnput _,pacc_, rcqtul-e more radial

bas_s neurons I_ar traimng.

5. (?onfiguring a radial basis network ellen takes less ume

than that for a back-propagation network because the

t;zunin o=process for the lormer is a linear _n nature.

!_. RBNN with the combined feature ,q llexlbilitx and tincar

:egression is more accurate [rkm I_t'NN. ',_Jlich _>

nonlinear.

Based on the results shown in Tables 4 and 8, it is seen

that the RBNN technique performs consistentlx, and holds

promise for the design/optimization of advanced rocket

propulsion components. The method adopted here to generate

I?,PNN _s not necessarily the most efficient. Given a better

method t)f making the selection of the number t_l neurons in

the hidden laver, BPNN, might be able to pertbrm better.

Future work would be aimed at implementing a better

designing procedure for back-propagation networks. The work

has been carried out with modest data sizes and the training is

fast tor such cases. Issues,related to the number of design

-- _ariables and training data size are criucat for pracucat design

?.pplications. and should be add'ressed lp, the luturc.
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O/F [ V/V, L,.,,_,, in.
4.6.8 4 4,5.6,7,8

4.6,8 6 4.5.6.7,8

4,6,8 I 8 4.5.6.7.8

Table 1: Range of design variables considered for the shear coaxial injector clement.

Model Coefficient = 0 Terms l Terms Included _,, (%) 0"(%)
# Removed

[ I Quadratic and less

V/Vo _ i
i

V'./Y_/3 4
4 !

. i

5 J_":q',:_l.........

i

7

: V,/Vo] 0.218
0.0857

r _'./_"_)/:L......... ! 0.0799

t_'/_:°f2l .......... r l 'd'_)" ! 0.0799
, _'./_'::) , l..,,,,,/ 0.0859
_',A"o) _ I L,,,,,..,)"_,(V/V,,):(L,,,,,,:,): J 0.0936

_'/Vo_ _ :l.,,,,,u) _, :I,,A,,) _L,,,,,,U . Vcq/o(L,.,,,,,f,)' 0.0988[ :VYVoj:L,,,,,,,.

'Fable 21a): Different cubic pob'nomiats for ERE. (Dependent variables: _i/_:,, and L,,,,,,,, t5 training points,

10 test pointsl (Errors are given in percentages of the mean value of the responses).

0.280

0.212

0.214

0.214

0.213

0.212

0.212

Model ('oefficient : I) I ferms

!,?.cmoxcd

O/FI-

2 /V/V:n'.: 0/f:)' 5.584 2.234
3 __)/l,b' , t,, _.o: ! 5.584 2.094

4 _ :_,'/_'or, !O/F)' 5.584 2.094
l

5 1 ' 5.584 2.234( t"/_o_. I OIF)'

Terms Included [ _, l";) ] 0"(%)
i

1-

()uadratic and less ! 5.445 i 3.490

6 ( I'A,'ol'. : O/F) J, r _iA:o _: , 3.909 _ 2.094

7 _ __,'/_,'-). _C)/t":'. t _'/Vo)- :_'A'o)-fO/t:)- 5,584 i 2,094

Table 2(b): Dit'fl:rent cubic polynomials lot Q. i Dependent variables: O/F and V/_.:,, 9 training points. 4 test
points) (Errors are g,ven in percentages (,f lhe mean value of the responses).

Scheme # of # of neurons in I # of neurons in Error qoal aimed for during training

lxp,'ers !' the hidden lax er ! the_

_ , - : .'7 e
RBNN {Soh'e,be) " i, 1_ , ') ] I _ i O.O {so= 3.25) I).0 {sc = 1.20}

RBNN(Soh'erb_ 2 14 _ 1 i' I ,: 0.001 {so= 1.05} 0.001 {sc= 1.05}
BPNN 2 8 4 i 1 / I I 0.01 I 0.01

"Fable 3: Neural Network architectures used to design the model for shear coaxial injector element. {sc =

spread constant }

Scheme cr tiw ERE I';:f ) cr tbr Q (%)
RBNN (Soh'crbe) 0.207 1.396

RBNN (Soh'erb) " 0.133 1.536

BPNN 0.i80 0.832

Partial Cubic RS 0.213 2.234

Quadratic RS 0,280 3.490

Table 4: RMS err_}r i_, predicting the values ot the objecIive function bv various schemes for the shear
coaxial in ector element (Errors are L,iven in percentages of the mean value of the responses).
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V/V,, Scheme i O/F L,.,,,,_, in. ERE, % Q, Btu/inZ-sec

4 RBNN (Soh'erbe) 8.0 7.0 98.60 (0.00) 0.588 (0.00)

RBNN (So/verb) 8.0 7.0 98.60 (0.00) 0.588 (0.00)

BPNN 8.0 6.9 98.64 (0.14) 0.578 (1.70)

Partial Cubic RS 8.0 7.0 98.61 (0.01) 0.594 (1.02)

Quadratic RS 8.0 7.0 98.67 (0.07) 0.591 (0.51)

Model 8.0 7,0 98.60 0.588

Model 8.0 6.9 98.50 0.588

6 RBNN (Soh'erbe) 8.0 7.0 99.20 (0.00) 0.512 (0.00)

RBNN (Soh'erbl ! 8.0 7.0 99.20 (0.00) 0.512 (0.00)

BPNN I 8.0 7.0 99.18 (0.02) 0.513 (0.20)

[ Partial Cubic RS 8.0 7.0 99.15 (0.05) 0.500 (2.34)

] Quadratic RS l 8.0 7.0 99.17 (0.03) 0.531 (3.71)
Model _ 8.0 7.0 99.20 0.512i

RBNN (Soh'erbe _ j

RBNN (SolverS) t

BPNN

Partial Cubic RS

Quadratic RS

80

8.0

, I

7.0

7.0

99.40 (0.00)

99.40 (0.00)

0.493 (0.00)

0.493 (0.00)

T 0.500 (1.42)
8.0 i 7.0 99.41 (0.01)

8.0 1 7.0 99.42 (0.02 } 0.499 ( 1.22)
S.O 7 0 09.67 (0.27)

99.40J Model ,',.0 ! 7.0

0.47 ! (4.46)

t 0.493

Fable 5 Optimal Solution,,, lot ti\cd '.atuc', ,ff _,,,"_ and given ran,_,e _t 0/1: and l ....... ,, obtained \_ith NN

and RSM schemes for the _hear coaxi;.t[ mlector elemem. _('onstraints: 4 _< O/F _< 8.4 <_ L,,,,,,,, _< 7) _Errors

are given in parenthesis for cizch prediclion i_,m __ I

TypeofRS cr for *?{'il ' error t/("f) ] _,for W(¢+) l Gtor W(%)
I

Quadratic RS 2.507 0.863 ] 0.788 1.281
i Reduced Cubic RS ! '.').4u 1,()31 0.402 J 1.223

I

Table O: l'raining and predlcung error Ior diilerent rcspollsc surtaces ot the objective functions of the

_,upersomc turbine. (Error.-, are _tvcn in percentages of lhe mean value of the response,,,)

Sct_eme -': ,q ncur_ms m lhe

ilidden laxcr

RBNN !So/vert_e_

,_ U,"

1

..7 75

: _ 60

!: _1 neurons m the i Error ,4()at aimed for
i

output laver _ durine trainin_

i W
!
f
!

l

I

I t

().0

{so = 9.50 }

0.0

{sc = 9.45 }

RB N N (Soh'erb) _ 0.001 0.001

{sc = 6.50} {sc = 8.35}

t3PNN 2 0.001 0,001

Fable " Neural Network architectures L>cd to design the mudels lot _1, W and _'..,,, of the :,upersonic

i tJrbine. , ,c' = _prc'addOSl_h/lHl

Scheme cy tor r1 I':;) o- for W (%)

RBNN (Soh'erbe) 1.251 1.096

RBNN (SolverS) 0.292 1.102

BPNN 0.777 2.563

Reduced Cubic RS 1.03 1 l.__0_""

'l'able 8: RMS error in predicting the values of the objective function by' various schemes lor the supersonic

turbine, t Error are given in percentages of the mean value of the responsesl



Scheme

RBNN

(Soh'erbe)

Meanline

RBNN

ISoh,erb)
Meanline

BPNN

Meanline

Reduced

Cubic RS

Meanline

D

0.972

0.972

0.999

0.999

1.024

1.024

0.903

0.903 t

RPM A ...... l C,

1.181 0.811 1.443

1.181 0.8ll 1.443

1.149 0.857! t.483
I

1.149 0.857 1.483

1.121 0.901 1.168

1.121 0.901 1.168

1.272 0.700 1.700

[.272 i 0.700 ] 1.706

Cb

0.836

0.836

0.792

0.792

1.143

1. 143

0.871

!0.871

K_ q
0.0 0.810

(5.80)

0.0 0.766

0.0 0.785

(1.75)

0.0 0.772

0.0 0.793

(2.49)
0.0 (I.772

0.0 0.758

( 1.50}

0.0 0.746
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_V Vp,tc h

0.636 1.148

(0.74_

0.641 1.148

0.653 1.148

_0.17)

0.654 1.148

0.608 1.148

t8.63)

0.666 1.148

0.591 1.148
(2.10}

11.6114 1.148

AN: Apay
1.132 -0.139

(29.80)
1.132 -0.197

1.132 -0.177

(9.16)
1.132 -0.194

1.132 -0.153

(21.49)
1.132 -0.195

1.132 -0.194

(8.40)

1.132 -0.211

Table 9: O)timal Solutions with constraints on V;,,,,j, and AN" for a supersonic turbine. (Error given in

parenthesis tot each prediction is in "_ ). {All variables are normalized by their respective baseline values)
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normalized bv their respective baseline values) (Continued).



AIAA-2000-4880

Eflect of ('onstramts on Optimum .,\nnu[us Area

14 _

13 _

12

"_ 11 _

-- 09_
<

os

07

06 ..............

fl I t'ase # 2

_1: No constraints: 2: ('oll',,ll_llllls

on AN `) and "¢Iltd_

+_ ubic RS

-- _ -- I,LBNN

I SoN erbe I

o - -X- - 'RBNN

iSob, erb)

-- -_- -- BPNN

Effect of Constraints on Optimum Vane Axial Chord

] SO ,

t 71) :

I 60
7

150-

7 1 40 -
<

_. 130

> 1.20 +

I OO

---"4k_ C ubic RS

ISolver_l

\

- - -K- - "RBNN

'_ t Solve rb

-A- -- BPNN

Case #
0 I 2 _ ......

I 1: No constraints: 2; (_onstraints on

\N2 and \rllldl_

(el (d)

[!IfCCt tit ('OIl_ffalllt_ or1 ( )l_tilllum [$1allc \ _LLI k It, ,hl

I 41) -

:25 •

7
± t tl)

7- 00_

E

(16_ '

I!_tCCl OI ( OIP, ltalllt>, Ol! ()ptill/tlm _'Jtag¢ ]4CaCIIOI1

_ 50 ........

-------'4_t ublc RS '

&-----t_ ?

_i_ cz bc_

- - -X- - ",4q>,N 5

H _tl

-- -_" -- BI'NN

I'c NOCO_IMIdHIthl _ (,,nMr,tzn[_

,n \N2 .rod \ [l',_lu _','.! at/d \ [ll;]_J

- - '-X- - -RBNN

, Sohcrb+
]

-- -d_" -- F;F'NN

_o_ I_

I:igLIlC 14: t!li'o-'t due to prc:,cn,.'c _ca>,c i ,,r lack _4 c(mMramt_ <ca:,c 2i _ta design ,,ariablcs. ta_ Optimum

l)iameter, D (in.L (b) Optimum /4P,'I]. __'1 ()F_IimLIH] .\nnulus _\l+C:.t, ,A,,,,,m (in.C), {d) ()ptimum Vane Axial

('hord, C'_ tin.), {e) Optimum Blade ,.\',:h.t[ (ihurd. ( _ln.) and (ft Stage Reaction, h_ _+,;) (All \arlables are

n_wtnallzcd by their respective t_a,_clillC \ ;lilACS !.

l lfcct _,t( l+li+ll,ll+l[__'IIt +U;IIIiHHIl] [_CLI _lt / L+IIMIIIIlII_t+ltt'I'{ImLllli_,_,Cl-'ilt

:0 5[) -- ,

• _ -- _ -- :ll+_X\ 70 -- _ m kBNN

• mlt_crbel
I IIU _ ],crtC_ _+ i}(17 ,1= _ - - -_- - "],A3NN

,_ _H) - - -X- - -!:IC',N ,I flO

o _I) , '_,,h cr h, qot,,erb I

_) 7() I "& I BPNN -- -_" -- I+PNN

+
...... O,50 + ] I

0 60 0 I 2 3 ;

i ] _o COfl6tl41llltS: 2_ ( OIl_[rLL]lll_ ] "Nt) COIISU;II[II.M _; ('on_tl;tlntS

,>n ,AN2and b Ill_:t_ _+n ,\N2and \ IiIG_)

(a) Ib)

Figure 15: Effect due to presence (case 1) or lack of constraints lease 2) on objective functions. (a)

Optimum Efficiencv, _1 to+). _b) Optimum Weight. W _lbs), (c) Optimum pitch speed, V,,,,h (in. /sec), (d)

Optimum AnnulusArea X RPM, AN: (m:+rpm -) and (e) Qptimum Incremental Pa,Aoad, Apay (lbs_ (All

variables are normaiize_ bv their respective baseline valuesi IContinued).



AIAA-2000-4880

i+5

20 ,

-- 15,

>
IO-

Effect of Constraints on ()l)(imtlHi \ [itdl

+_ ubic 1/.5; 2.20

-- "e -- RBNN

, %,3Nclbel

- - ")(- - +RI]NN

",_',1; e rh )

-- -t_. -- BPNN

zq ISO

Effect of Constraints on Optimum AN2

t40 -

0.5 1

t

O0 100

0 i 2 0

i I No constraints: 2 (onMlalnl_

un AN2and k'latc]U

it)

--==="_'--- Cubic RS

-- "S -- RBNN

(Solverbe)

- - "X- - -RBNN

(Solverb)

-&' -- BPNN

1 2 3

(a_e #

, ] NO constraints: l: ('o,lslraints

,,n AN2 a/ld VIatt'Jll

(d)

[+lilt:el t)[ L'ort',tla+rllx t_e+ t JptlH+tt++l 'xp.i\

0 40

(} UJ

,! 2(1

tlllJ

1) t11)

(l 1{)

_) 2(1

() i(1

n

\\

+, thic i'_%

-- "_ -- i..}_NN

%,_[_ClbCi

- - -X- - -F;I_NN

%q,,crbl

m ._. -- Iq",,N

]

: a ,c ,++

I I k {) ct)ll_tldlllt_: _ (, qls[I.lLI)[,,

,n AN2 ,uld _, ]lhJl)

'el

t:igure 15: }£ffect due tt_ presence (case 1) _,t + iack t,t Ct)Ib, ll;.lil]t_, tca.,,e 2) t)n t)bjc_.'tlxc It|)lCtions. (a)

Optimum F.fficiencv. _1 ('i). It',) ()ptimunl \Veight. 11 +lbs). <c _ ()l+tlmum pitch speed. _, ..... (in. ,>ec 1, (d)

()ptimum Annulus Area × I?PM..I.\: _n:'t-pm-)and (ci ()ptimum Incremental P:tvhmd.._/,,,tv (Ibs) <All

dl+ldbics dle t]oiii-lalizcd [-,\r _JlCII" I+C>,pCC[I', C {";t>Clllle \ttJllegJ.


